组织学病理图像在深度学习中染色处理的研究进展

罗诗欢,刘智明,杨必文,郭周义

激光生物学报 ›› 2022, Vol. 31 ›› Issue (6) : 481-487.

PDF(3133 KB)
PDF(3133 KB)
激光生物学报 ›› 2022, Vol. 31 ›› Issue (6) : 481-487.
研究进展

组织学病理图像在深度学习中染色处理的研究进展

作者信息 +

Advances in Staining Processing of Histological Pathology Images in Deep Learning

Author information +
文章历史 +

摘要

摘 要:深度学习使辅助诊断的软件能够更积极有效地开发和应用,但是组织病理学图像的颜色变化降低了这些算法的性能。染色归一化可以解决扫描仪效应、不同的染色方法、患者的疾病状态、染色时间等因素产生的图像异质性。虚拟染色可以摆脱载玻片染色,减少载玻片的制备步骤,为临床缩短样本的制备时间,节省大量的成本。在缺乏注释训练数据的情况下,病理图像数据增强可用于创建具有纹理和颜色、样式逼真的人工样本来促进网络训练。本文就组织学病理图像在深度学习病理分析中染色处理的染色归一化、虚拟染色和数据增强等方面展开综述,为组织学病理图像在临床上的应用和研究提供参考。
关键词:组织学病理图像;染色归一化;虚拟染色;数据增强;深度学习
中图分类号:TP391            文献标志码:A                  DOI:10.3969/j.issn.1007-7146.2022.06.001

Abstract

Abstract: Deep learning allows software to assist in diagnosis to be developed and applied more aggressively and efficiently, whereas the color variability of histopathology images degrades the performance of these algorithms. Stain normalization can address image heterogeneity arising from scanner effects, different staining methods, patient’s disease states, staining times, and other factors. Virtual staining can eliminate slide staining and reduce slide preparation steps, reducing sample preparation time for the clinic and saving significant costs. In the absence of annotated training data, pathology image data augmentation is performed by creating artificial samples with realistic texture, color and style to facilitate network training. In this paper, we made a review on staining processing of histological pathology images in deep learning pathology analysis to provide a reference for histological pathology maps in clinical applications and research.
Key words: histological pathology images; staining normalization; virtual staining; data enhancement; deep learning
(Acta Laser Biology Sinica, 2022, 31(6): 481-487)

引用本文

导出引用
罗诗欢,刘智明,杨必文,郭周义. 组织学病理图像在深度学习中染色处理的研究进展[J]. 激光生物学报. 2022, 31(6): 481-487
LUO Shihuan, LIU Zhiming, YANG Biwen, GUO Zhouyi. Advances in Staining Processing of Histological Pathology Images in Deep Learning[J]. Acta Laser Biology Sinica. 2022, 31(6): 481-487

PDF(3133 KB)

Accesses

Citation

Detail

段落导航
相关文章

/